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Fractal analysis of electrical trees in a cross-linked synthetic resin
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A statistical picture of dielectric breakdown in cross-linked polyester resins for a two-dimensional geometry
is presented and discussed in this paper. A connection is established between the dielectric breakdown model
(DBM) and the physical properties of the resin. Distribution propagation times of simulated trees obey a
Weibull statistics, as was experimentally found. This adjustment is achieved by a redefinition of the unit of
time, which is different from the one employed up to date. The experimental dependence of characteristic
propagation times on the fractal dimensibncan be reproduced in the range <R2<1.5. A relationship is
established between the glass transition temperdiyleend the DBM parametey, which is in agreement with
thermodynamical considerations. It is suggested that fractal characteristics of electrical trees should be related
to a basic material property, such as the cross-linking density, which implies a notion of universality that
deserves to be explored.
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[. INTRODUCTION tors, such as the strength and polarity of the applied voltage,
also modify the fractal dimension, showing that it strongly
Dielectric breakdown of insulator materials leads to sto-depends on the internal characteristics of the material. An
chastic branching patterns or fractal structures. Fractal stru@xtensive compilation of the experimental evidence has been
tures are characteriz¢d] by the relationship betweex(r),  Performed recently by Kudi8]. However, a deep analysis of
the total number of branches inside a circle of radiuand  the relationship between the fractal nature of the electrical

the radiusr itself. This relationship should be a power law trees and properties of the material is required.

with a noninteger exponerm In this paper, we make a complete comparison between
the trees generated by the DBM model and those experimen-
N(r)~rP, (1) tally obtained by Cooper and Stevef8] in cross-linked

polystyrene materials. A description of the experimental data
is given in Sec. Il . The DBM model and the modifications
| performed in this work are given in Sec. Ill. We also discuss
to describe the fractal nature of branching structures that a/€ different methods used in the determination of the fractal

similar to those obtained by dielectric breakdown experi-dimension, especially that utilized by Cooper and Stey6hs

ments. Later on Niemeyer, Pietronero, and Wiesmia] N the analysis of experimental structures. .
developed the dielectric breakdown mo@@BM), in which Finally, in Sec. IV we compare experimental data with
the growing probability on each site was considered to bdlUmerical simulations and found a description and interpre-
proportional to an electric field power at that site. In 19g6tation for them, with an adequate redefinition of the basic
Wiesmann and Zellef5] introduced modifications to the Parameters.
- EXPERIMENTAL EVIDENCE
tures known as electrical trees.
The introduction of stochastic models has allowed the The electrical discharge process in insulator materials oc-
comparison between experimental structures and those geedrs in three steps: initiation, propagation, and termination.
erated by numerical simulation. Generally, it is consideredThe tree patterns are formed during the propagation stage
that the fractal dimension depends on the physical andnd propagation time is defined as the time from initiation
chemical characteristics of the material, the applied voltage(j.e., first appearance of a tree channtl the complete
the presence of mechanical forces, etc. bridging of the electrode gap. Cooper and Stei@jshave
Cooper and Steveri$] have studied the relationship be- studied the influence of the physical properties of a cross-
tween the fractal dimension and the cross-linked level ininked polyester resin on its electrical tree behavior in the
polyester resins. They observed that an increase in the pogieint-plane geometry. Blends of an unsaturated linear poly-
cure temperaturéand then the cross-linked leyghcreases ester with styrene monomer g8;CH=CH,) were used. The
the fractal dimension and the characteristic propagation timaddition of a methylethylketona hydroperoxide catalyst
of electrical trees. Similar results have been obtained byauses simultaneous styrene polymerization and cross-
Maruyamaet al. [7] in cross-linked polystyrene. Other fac- linking. As the reaction proceeds the cross-link density in-
creases beyond the gel point. To obtain a range of network
characteristics and physical properties, the resin systems

* Author to whom correspondence should be sent. FA0054  were initially cured to cessation of the cross-linking reaction
(221) (4254642. Email address: eemola@infovia.com.ar at 25 °C followed by a postcure at a range of temperatures up

whereD is called the fractal dimension.
In 1982 Sawadet al.[2] introduced the stochastic mode
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to 80 °C. These polymer networks, which are initially formed @ 60
at 25°C, have the ability to continue to cross-link as the % 50k
postcure temperaturd fs) is raised. At 70 °C, the network o f
has fully reacted and the cross-link density is at its maximum E 40¢
value. Thus,T . is correlated with the cross-link density L sof
(see Cooper and Stevef for details. 'g 20b
Cooper and Steverj$] have also reported measurements B ;
of the glass transition temperaturgyj as a function of post- 5 °F =
cure temperature made by differential scanning calorimetry 5 01:0 T R yumr T (a)

(DSO). Electrical trees were studied in the point-plane geom-
etry, using 5um pin tip radius steel needles and a 2-mm
separation between electrodes.

For each postcure temperature, the propagation time dis-
tribution was measured. Cooper and Steviishave ana-
lyzed the experimental data using two-parameter Weibull
statistics[ 9],

Fractal dimension D

60

55[

505
P(t)=1-exfd —(t/a)”], 2 i
45:

whereP(t) is the cumulative probabilityg is the character-
istic propagation time, an@ is a shape parameter.
Hence,a and B values were reported as a function of
postcure temperature. An increasednwith T, was ob-
served, whileB was nearly constant. FIG. 1. (a) Characteristic pr tion tim function of
Tree patterns were structurally characterized measuring -+ (@ LNaracteristic propagatio esas a function o
. . . . actal dimensiorD. (b) Glass transition temperatuilg, as a func-
their fractal dimension. The authors employed a simple ra:. X ;
. . ; S ._tion of fractal dimensiorD. Data from Ref[6].
dial method, in which an origin is chosen at the needle pom%
and arcs of known radii are drawn from the origin. The ef-lattice units will represent the experimental situation ad-
fective length of all tree segments within each arc wasequately. In this work, 108100 lattices and, in some cases,
counted and the cumulative number of segméras a func-  200X200 lattices were employed.

40 : N 1 . 1 N 1 . 1 L 1 N (b)
10 11 12 13 14 15 16
Fractal dimension D

Glass transition temperature Ty (°C)

tion of radiusR was obtained. The scaling law Breakdown starts at a point of a high local field and this
enhancement is usually attributed to electrically conducting

L(R)~RP ()  inclusions. The conducting inclusions are represented by

_ ) _ electrode pins. Discharge simulations begin at one of the

was used to obtain the fractal dimension electrode pins where a short filament represents the tip of one

In Sec. Ill we compare this method with the more exhausypin. The rules assumed for the growth of the discharge pat-
tive correlation function method. However, in order to com-tern (the electrical treare the following.
pare our simulated results with experimental data, we used (1) The electrical tree grows stepwise. The discharge
the radial method to calculate the fractal dimendionCoo-  structure has zero internal resistance, i.e., at each point of the
per and Steven$] have determine® as a function oflf .y  structure the electric potentiap is ¢=0, whereas at the
and found an increasing value Dfas the postcure tempera- counterelectrode it igp=1.

ture Tpos S raised. The discrete form of the Laplace equation
For theoretical comparisons that will be developed in Sec. 1
IV, in Fig. 1 we plotted the experimental characteristic ¢i,k:Z(¢i—1,k+ Giv1xt Bik_ 1+ Dis1) (4

propagation timex and the glass transition temperaturg

obtained by Cooper and Stevef§] as a function of the g golved with the above boundary conditions.
fractal dimensiorD. (2) The probability that a bond will form between a point,
which is already part of the electrical tree, and the new ad-
lll. FRACTAL ANALYSIS OF DIELECTRIC jacent point is a function of the local field between the two
BREAKDOWN PATTERNS points(i.e., the potential difference between the two points
A power-law dependence with exponentis assumed and
A. The model the probability associated with poiritk at the structure and
A two-dimensional square lattice, in which two opposite pointsi’,k" adjacent to but outside it, is given by
sides represent the two electrodes, is consid¢i®li We ro\n
adopted this model because boundary conditions imposed by P(i k=i’ k')= (bir ) _ (5)
a planar geometry sample allow the study of dielectric break- ’ ' 2 "
down without any loss of generality. The interelectrode gap . (&711)
is typically 1-2 mm. Microscopic examination of electrical ('1her
tree growth shows that branch extension occurs in increThe sum in the denominator refers to all of the possible
ments typically of 5—1Qum. This implies that a gap of 100 growth sites [’,|’) adjacent to the electrical tree, whdreés
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FIG. 2. Two fractal structures simulated with the dielectric 7 ;5|
breakdown mode(DBM), presented in Sec. Il A withy=1. E '
. (a)
the set of possible candidates to be incorporated into the < 0 o
: 1200 1350 1500 1650 1800 1950 2100 2250
electrical tree. A
Propagation time, t "
(3) A new bond is chosen randomly and added to the elec-
trical tree. >
(4) With the new electrical tree and boundary conditions  Z
the process starts again. 8 1 o
The trees generated by this model have a fractal structure E 7
that has been broadly dealt with in the literatilé®—13. o 08}
According to the DBM growing rules, for each value pfve -%
obtain a family of trees that have statistically the same fractal = 06}
dimension D. Two trees obtained with=1 are shown in §
Fig. 2. C o4}
The probability of dielectric failure is usually determined
as a function of the propagation time, measured as a function '® 02f
of the number of bonds incorporated into the ttgewhere E ”
. . ; ) S (b)
the incorporation of a new bond represents a unit of time. z 0
The cumulative probability of failure in the trees gener- 69 77172737475768777879 8
ated by computer simulations of the model satisfies a two- Propagation time, t

parameter Weibull distribution such as those observed in ex-

perimental studiegsee Eq.(2)]. The histogram showed in FIG. 3. Normalized cumulative probability of propagation

Fig. 3(@ represents the cumulative probability of failure times.(a) Time is measured as the number of bonds incorporated

obtained from a 500-tree family witly=1, simulated on a into the tree (). (b) Time is measured as the number of periods

100X 100 lattice. The histogram is adjusted by a Weibull required for the tree to incorporate a number of bonds equal to the

distribution[continuous curve, see E(Q)]. number of candidates incorporated in the previous petiod
Figures 4a) and 4b) shows the Weibull distribution pa- ) ) ] ]

rametersa and 3, respectively, as a function of the model Period timet, respectively and those experimentally ob-

parameters. The mean valueg and w/o, calculated from tained.

the normal distribution with meap and standard deviaton ~ The new time unit also gives a Weibull distribution with

o are also shown in these figures. The behavior of thesparametersa,) different from the previous ones(, Bs).

values is similar tax and 3, respectively{see Eq(2)]. Figure 3b) shows the cumulative probability of failure for a
In order to find an appropriate comparison with the ex-500-tree family with»=1 simulated on a 200200 lattice.

perimental data, we redefined the time unit mentioned above.

The new unit of time needed to reproduce experimental data B. The fractal dimension

indicates the existence of a relgxatpn time related to ]fh'|s There are different methods to estimate the fractal dimen-
set. In other words, the old unit of time based on the time

i f the electrical Eqg. (1 ly classifi
elapsed from the incorporation of a new bond to the nexSlon of the electrical tre¢Eq. ()] recently classified by

_ kudo [8] in the following methods.
one, does not reproduce experimental data. However, a unit (a) The box counting method.

of time based on the time elapsed to incorporate a number of (1) Fractal measure relations.

bonds equal to the number of elements of Iheet, indeed (c) The correlation function.

reproduces Cooper’s results. This unit of time impliesk (d) The distribution function.

(k=1,2,3...), seeFig. 5, an average value in material re-  The radial method employed by Cooper and Ste\iés
laxation time, which is the time needed to incorporate a numgq. (3), is shown in Fig. 6 in a log(R) vs logR plot, applied
ber of bonds equal to the whole members of theet. The  to two electrical trees simulated by the dielectric breakdown
electrical potential is calculated when each bond is incorpomodel, with =1 and »=5. When the increments iR are
rated into the tree. In Sec. IV we compare the propagatiowery small, the lod.(R) vs logR curves have S shapes be-
time calculated by the two methodsalled step timeg, and cause of incomplete sampling. Following Cooper and
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FIG. 6. Range of validity of the radial method, see Eg), to
[ evaluate fractal dimensiori3 on 100<100 lattices for a couple of
I (b) simulated electrical trees.
[+ IFEFEFEPE IPEPEPEPE IFEPEFEE BN PEEPT R
0 1 2 3 4 5 6 situations is limited by the complexity of the method. On the
n other hand, the radial method, see EB), has the advantage
of simplicity. We compared both methods in 500-tree fami-
FIG. 4. (a) Dependence of characteristic propagation timé&  lies generated on a 18000 lattice.
[Weibull distribution, see Eq2) and the mean timg, B (normal Figure 7 shows a comparison between the radial and the

distribution on the DBM parameter,. (b) Dependence of shape correlation method as a function of thevalue. Both meth-

parameteis, O [Weibull distribution, see Eq(2)] and the relative  ods give similar fractal-dimension mean values, but the ra-

mean valugu/c, B (normal distribution on the DBM parameter,.  dial method has very large dispersion. It is necessary then to
take a large number of samples in order to have a better

Stevens[6], the ends of these curves were not taken intoestimation of the fractal dimensidb.

account. Within the 95% of the confidence interval, the lin-

ear relationship is satisfied. IV. RESULTS
The correlation function method gives distributions with _ o _
smaller standard deviations of the fractal dimensiband, Figures &a) and 8b) show principal branches of electri-

for this reason, it is one of the most frequently employed incal trees experimentally obtained by Cooper and Stel&hs
the study of simulated tredd.3]. However, its use in real

1.8
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—t— 16F
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S 15f -
» [
& 1.4f
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g 13 a »
(3] C
N S 1.2¢ ? .
L : '3
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a)t=k b) t=k+1 :
¥ | S N T T N S
FIG. 5. The new unit of time is the period required for the tree 0 1 2 3 4 5 6
to incorporate a number of bonds equal to the number of candidates n
to be incorporateddashed lines at (a) t=k; (b) t=k+1, k
=1,23.... From (8 to (b) t increases by one unit, wherets FIG. 7. Comparison between the fractal dimendibevaluated
increases by 11 units. with the function correlation method), and the radial methodll.
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FIG. 8. Comparison between an experimental electrical (vae =~ oaf
the left, from Ref[6]) and a simulated electrical tréen the righ} S T F
from the DBM model(7=3) developed in Sec. lll A . Both struc- §_ 03
tures have the same fractal dimensior-1.18 evaluated with the 5@ 02E
radial method. = o _
) 3 0_0E....|....|....|....|....
whereas Fig. &) shows a fractal structure generated by the 10 11 12 13 14 15

model developed in Sec. Ill. A visual comparison between
experimental and simulated electrical trees enabled us to ap-
preciate their remarkable similarity. FIG. 9. (a): Dependence of characteristic propagation times

Now let us compare the dependence of the characteristi@cyp:, O; s, B; and o, A on fractal dimensiorD. (b) Depen-
propagation timer on the fractal dimension of the electrical dence of characteristic propagation timesand « relative to the
trees generated by the model developed in Sec. Ill, and thexperimental valugrey,, on fractal dimensiorD. as/aexp (O);
experimental dependence obtained by Cooper and Steveréeexpt (l).
shown in Fig. 1.

Electrical trees were simulated on a 20000 lattice based on the number of bonds inCOprfatEd into the electrical
(size). Due to the fact that characteristic lengths of electricalt’€ets, as was proposed up to now by different auttdr,
channels are roughly 5 to 10m, the above-mentioned lat- fails to reproduce the experimental facts, see Fig. 9.
tice size is adequate to simulate the 2-mm-thick samples The glass transition temperatufg of cross-linked poly-
used by Cooper and Stevef. mers is proportional to the cross-linked density ,(

Propagation time was evaluated by using two different
approachegsee Sec. Il A, calledtg step andt period, re- Tg(n)=Tg(0)+2n, ©

spectively. If the model was adequate to describe the e?(peri/VhereZ is a material-dependent constant. EquatiBnwas

Sproposed in the 1950s by Ueberreiter and Kamjig).
Glans and Turnef16] have tested the validity of such as-
sumption on samples of cross-linked polystyrene.

We have recently proposed a thermodynamical interpre-
tation for the fractal structures obtained by the DBM model
on a linear two-dimensional geometr¥0,17,1§, following
the pioneer paper of Elezgaray al. on an open-planar ge-
ometry[19]. According to the growth rule of the model, a
¥ollection of electrical tree€,,, whereM is the number of

ranches is obtained and the branching struct@gsgive

he state of damage in terms of the number of branches. In
this context, a probabilityp(C,,,n) for eachC,, can be
assigned to each value gf Based on a number of numerical
simulations, the following expression can be obtaihs]

Fractal dimension D

(theoretical and experimenjalould differ by a constant,
@theor/ Xexpr=Cte.

Figure 9a) shows the dependence @f a;, andagyp; 0N
the fractal dimensio. Both, @ and ag were multiplied by
a constant factor for comparison purposes. Ratif8eyp:,
aslagyp @s a function of the fractal dimensiod were
evaluated and plotted in Fig(l9, wherea.,, stands for the
experimental characteristic propagation time obtained b
Cooper and Stever|$]. We learn from that figure that the
ratio a/ ey @pproaches a constant value when the fract
dimension(or the cross-linking density, see Sec) i$ in-
creased, whereas the ratiQ/ ac 4, grows without any limits
as the fractal dimension increases.

Characteristic propagation time seems to describe sat-
isfactgrily' the experimental behavior within the fractal di- IN[p(Cpm,7)]1=S(Cy) +A(Cy) () + y(7,M), (7)
mension interval 1.4 D<1.5. Therefore, we can conclude
that the unit of time proposed in this paper to evaluate propawherew(») andy(#n,M) are two universal functiongy(Cy)
gation timet clearly reproduces the dependence of characterplays the role of the energy of the electrical tree, and
istic propagation timex on the fractal dimension observed S(Cy,) is a history degeneracy factor. The above expression
experimentally, see Fig.(8. Hence, a propagation time for p(Cy,7) has the form of a Boltzmann weightdf(#) is
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[44]
(=]

terials by numerical simulations based on the DBM model in
a two-dimensional geometry. We extended the one param-

(&) :
°‘; 54;' eter model(DBM) by redefining the unit of time. The new
ol 713 unit of time is based on the time elapsed to incorporate a
g - number of bonds equal to the number of elements oflthe
5 SOF set, see Fig. 5 and E¢p).
§_ 485_ With the model developed in Sec. Il we found the fol-
GE, : lowing:
T 46f (i) The model produces fractal structures that are similar
2 E to those experimentally observésee Fig. 8 and6]), char-
® 44t acterized by a fractal dimensidb.
s ok (i) An adequate definition of the unit of time allowed us
@ E to reproduce the dependence of the characteristic tame
(—“D’ 00 experimentally found, on the fractal dimensibn which is
. valid in the interval 1.2D<1.5, see Fig. 9.
e e— (iii) Propagation distribution times of the simulated elec-

trical trees obey a Weibull statisti¢see Fig. 8a)] charac-
terized by two parameters; a shape faggaand a character-
FIG. 10. Dependence of glass transition temperalyren the  istic propagation timey, as experimentally founfb].
DBM parameterr, see Sec. IV. (iv) From Figs. 1a) and ib) we learn that the depen-
dence of the propagation characteristic timen the fractal
identified as a ratio with a “reference energy " and7,M)  dimensionD should be related to a basic material property
as the free energy. such as the cross-linking density. Based on variations in re-
Cooper and Stever[$] have determined that the cross- sidual enthalpy with the postcure temperature, Cooper and
linking reaction is exothermic with a total reaction enthalpy Stevens have come to the same conclusions, see Fig. 2 in
related to the concentration of styrene monomer and unsaRef.[6] . Anyhow, more experimental information would be
urated polyester sites. As the reaction proceeds the cross-liffecessary to test this hypothesis. In particular, chemically
density increases beyond the gel point. This was monitoregitferent cross-linked polymers should be investigated.
by measuring the residual enthalpy of the reaction and cor- (v) Finally, a relationship between the paramejpenf the
responding increases in the glass transition temperature. DBM model and the glass transition temperatdig was
In the present situation, the universal functiofwy) could  found, which is in agreement with derivations based on a
be identified with the inverse of the cross-linked density enthermodynamical model of electrical trefd0,18.
ergy (the above-mentioned “reference energybr, see Eq. The present model involves a notion of universality that

(6), with the glass transition temperature. Figure 10 showgjeserves to be explored; work is currently in progress at La
the relationship betweefy and 7 that was deduced by ob- pjata University to unravel it.

serving their dependence on the fractal dimendipnsee
Figs. 1b) and 7. An inverse relationship between glass tran-
sition temperature ang is observed. ACKNOWLEDGMENTS
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