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Fractal analysis of electrical trees in a cross-linked synthetic resin

I. M. Irurzun, J. L. Vicente, M. C. Cordero, and E. E. Mola*
Instituto de Investigaciones Fisicoquı´micas Teo´ricas y Aplicadas (UNLP, CONICET, CICPBA),
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~Received 20 May 2000; published 21 December 2000!

A statistical picture of dielectric breakdown in cross-linked polyester resins for a two-dimensional geometry
is presented and discussed in this paper. A connection is established between the dielectric breakdown model
~DBM! and the physical properties of the resin. Distribution propagation times of simulated trees obey a
Weibull statistics, as was experimentally found. This adjustment is achieved by a redefinition of the unit of
time, which is different from the one employed up to date. The experimental dependence of characteristic
propagation times on the fractal dimensionD can be reproduced in the range 1.2,D,1.5. A relationship is
established between the glass transition temperatureTg and the DBM parameterh, which is in agreement with
thermodynamical considerations. It is suggested that fractal characteristics of electrical trees should be related
to a basic material property, such as the cross-linking density, which implies a notion of universality that
deserves to be explored.
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I. INTRODUCTION

Dielectric breakdown of insulator materials leads to s
chastic branching patterns or fractal structures. Fractal st
tures are characterized@1# by the relationship betweenN(r ),
the total number of branches inside a circle of radiusr, and
the radiusr itself. This relationship should be a power la
with a noninteger exponentD

N~r !;r D, ~1!

whereD is called the fractal dimension.
In 1982 Sawadaet al. @2# introduced the stochastic mod

to describe the fractal nature of branching structures that
similar to those obtained by dielectric breakdown expe
ments. Later on Niemeyer, Pietronero, and Wiesmann@3,4#
developed the dielectric breakdown model~DBM!, in which
the growing probability on each site was considered to
proportional to an electric field power at that site. In 19
Wiesmann and Zeller@5# introduced modifications to the
DBM model in order to apply it to very different environ
ments of the stepwise propagation of those damaged s
tures known as electrical trees.

The introduction of stochastic models has allowed
comparison between experimental structures and those
erated by numerical simulation. Generally, it is conside
that the fractal dimension depends on the physical
chemical characteristics of the material, the applied volta
the presence of mechanical forces, etc.

Cooper and Stevens@6# have studied the relationship be
tween the fractal dimension and the cross-linked level
polyester resins. They observed that an increase in the p
cure temperature~and then the cross-linked level! increases
the fractal dimension and the characteristic propagation t
of electrical trees. Similar results have been obtained
Maruyamaet al. @7# in cross-linked polystyrene. Other fac
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tors, such as the strength and polarity of the applied volta
also modify the fractal dimension, showing that it strong
depends on the internal characteristics of the material.
extensive compilation of the experimental evidence has b
performed recently by Kudo@8#. However, a deep analysis o
the relationship between the fractal nature of the electr
trees and properties of the material is required.

In this paper, we make a complete comparison betw
the trees generated by the DBM model and those experim
tally obtained by Cooper and Stevens@6# in cross-linked
polystyrene materials. A description of the experimental d
is given in Sec. II . The DBM model and the modification
performed in this work are given in Sec. III. We also discu
the different methods used in the determination of the fra
dimension, especially that utilized by Cooper and Stevens@6#
in the analysis of experimental structures.

Finally, in Sec. IV we compare experimental data w
numerical simulations and found a description and interp
tation for them, with an adequate redefinition of the ba
parameters.

II. DIELECTRIC BREAKDOWN PATTERNS:
EXPERIMENTAL EVIDENCE

The electrical discharge process in insulator materials
curs in three steps: initiation, propagation, and terminati
The tree patterns are formed during the propagation s
and propagation time is defined as the time from initiati
~i.e., first appearance of a tree channel! to the complete
bridging of the electrode gap. Cooper and Stevens@6# have
studied the influence of the physical properties of a cro
linked polyester resin on its electrical tree behavior in t
point-plane geometry. Blends of an unsaturated linear po
ester with styrene monomer (C6H5CH5CH2! were used. The
addition of a methylethylketona hydroperoxide cataly
causes simultaneous styrene polymerization and cr
linking. As the reaction proceeds the cross-link density
creases beyond the gel point. To obtain a range of netw
characteristics and physical properties, the resin syst
were initially cured to cessation of the cross-linking reacti
at 25 °C followed by a postcure at a range of temperatures
©2000 The American Physical Society10-1
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to 80 °C. These polymer networks, which are initially form
at 25 °C, have the ability to continue to cross-link as t
postcure temperature (Tpost) is raised. At 70 °C, the network
has fully reacted and the cross-link density is at its maxim
value. Thus,Tpost is correlated with the cross-link densit
~see Cooper and Stevens@6# for details!.

Cooper and Stevens@6# have also reported measuremen
of the glass transition temperature (Tg) as a function of post-
cure temperature made by differential scanning calorime
~DSC!. Electrical trees were studied in the point-plane geo
etry, using 5-mm pin tip radius steel needles and a 2-m
separation between electrodes.

For each postcure temperature, the propagation time
tribution was measured. Cooper and Stevens@6# have ana-
lyzed the experimental data using two-parameter Weib
statistics@9#,

P~ t !512exp@2~ t/a!b#, ~2!

whereP(t) is the cumulative probability,a is the character-
istic propagation time, andb is a shape parameter.

Hence,a and b values were reported as a function
postcure temperature. An increase ina with Tpost was ob-
served, whileb was nearly constant.

Tree patterns were structurally characterized measu
their fractal dimension. The authors employed a simple
dial method, in which an origin is chosen at the needle po
and arcs of known radii are drawn from the origin. The
fective length of all tree segments within each arc w
counted and the cumulative number of segmentsL as a func-
tion of radiusR was obtained. The scaling law

L~R!;RD ~3!

was used to obtain the fractal dimensionD.
In Sec. III we compare this method with the more exha

tive correlation function method. However, in order to co
pare our simulated results with experimental data, we u
the radial method to calculate the fractal dimensionD. Coo-
per and Stevens@6# have determinedD as a function ofTpost
and found an increasing value ofD as the postcure tempera
ture Tpost is raised.

For theoretical comparisons that will be developed in S
IV, in Fig. 1 we plotted the experimental characteris
propagation timea and the glass transition temperatureTg
obtained by Cooper and Stevens@6# as a function of the
fractal dimensionD.

III. FRACTAL ANALYSIS OF DIELECTRIC
BREAKDOWN PATTERNS

A. The model

A two-dimensional square lattice, in which two oppos
sides represent the two electrodes, is considered@10#. We
adopted this model because boundary conditions impose
a planar geometry sample allow the study of dielectric bre
down without any loss of generality. The interelectrode g
is typically 1–2 mm. Microscopic examination of electric
tree growth shows that branch extension occurs in inc
ments typically of 5–10mm. This implies that a gap of 100
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lattice units will represent the experimental situation a
equately. In this work, 1003100 lattices and, in some case
2003200 lattices were employed.

Breakdown starts at a point of a high local field and th
enhancement is usually attributed to electrically conduct
inclusions. The conducting inclusions are represented
electrode pins. Discharge simulations begin at one of
electrode pins where a short filament represents the tip of
pin. The rules assumed for the growth of the discharge p
tern ~the electrical tree! are the following.

~1! The electrical tree grows stepwise. The discha
structure has zero internal resistance, i.e., at each point o
structure the electric potentialf is f50, whereas at the
counterelectrode it isf51.

The discrete form of the Laplace equation

f i ,k5
1

4
~f i 21,k1f i 11,k1f i ,k211f i ,k11! ~4!

is solved with the above boundary conditions.
~2! The probability that a bond will form between a poin

which is already part of the electrical tree, and the new
jacent point is a function of the local field between the tw
points~i.e., the potential difference between the two point!.
A power-law dependence with exponenth is assumed and
the probability associated with pointsi ,k at the structure and
points i 8,k8 adjacent to but outside it, is given by

P~ i ,k→ i 8,k8!5
~f i 8,k8

8 !h

(
~ j 8,l 8!PG

~f j 8,l 8!
h

. ~5!

The sum in the denominator refers to all of the possi
growth sites (j 8,l 8) adjacent to the electrical tree, whereG is

FIG. 1. ~a! Characteristic propagation timesa as a function of
fractal dimensionD. ~b! Glass transition temperatureTg as a func-
tion of fractal dimensionD. Data from Ref.@6#.
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FRACTAL ANALYSIS OF ELECTRICAL TREES IN A . . . PHYSICAL REVIEW E63 016110
the set of possible candidates to be incorporated into
electrical tree.

~3! A new bond is chosen randomly and added to the e
trical tree.

~4! With the new electrical tree and boundary conditio
the process starts again.

The trees generated by this model have a fractal struc
that has been broadly dealt with in the literature@10–13#.
According to the DBM growing rules, for each value ofh we
obtain a family of trees that have statistically the same fra
dimension D. Two trees obtained withh51 are shown in
Fig. 2.

The probability of dielectric failure is usually determine
as a function of the propagation time, measured as a func
of the number of bonds incorporated into the treets , where
the incorporation of a new bond represents a unit of time

The cumulative probability of failure in the trees gene
ated by computer simulations of the model satisfies a t
parameter Weibull distribution such as those observed in
perimental studies@see Eq.~2!#. The histogram showed in
Fig. 3~a! represents the cumulative probability of failu
obtained from a 500-tree family withh51, simulated on a
1003100 lattice. The histogram is adjusted by a Weib
distribution @continuous curve, see Eq.~2!#.

Figures 4~a! and 4~b! shows the Weibull distribution pa
rametersa and b, respectively, as a function of the mod
parameterh. The mean valuesm and m/s, calculated from
the normal distribution with meanm and standard deviation
s are also shown in these figures. The behavior of th
values is similar toa andb, respectively@see Eq.~2!#.

In order to find an appropriate comparison with the e
perimental data, we redefined the time unit mentioned ab
The new unit of time needed to reproduce experimental d
indicates the existence of a relaxation time related to thiG
set. In other words, the old unit of time based on the ti
elapsed from the incorporation of a new bond to the n
one, does not reproduce experimental data. However, a
of time based on the time elapsed to incorporate a numbe
bonds equal to the number of elements of theG set, indeed
reproduces Cooper’s results. This unit of time impliest5k
(k51,2,3, . . . ), seeFig. 5, an average value in material r
laxation time, which is the time needed to incorporate a nu
ber of bonds equal to the whole members of theG set. The
electrical potential is calculated when each bond is incor
rated into the tree. In Sec. IV we compare the propaga
time calculated by the two methods~called step timets , and

FIG. 2. Two fractal structures simulated with the dielect
breakdown model~DBM!, presented in Sec. III A withh51.
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period time t, respectively! and those experimentally ob
tained.

The new time unit also gives a Weibull distribution wit
parameters~a,b! different from the previous ones (as ,bs).
Figure 3~b! shows the cumulative probability of failure for
500-tree family withh51 simulated on a 2003200 lattice.

B. The fractal dimension

There are different methods to estimate the fractal dim
sion of the electrical tree@Eq. ~1!# recently classified by
Kudo @8# in the following methods.

~a! The box counting method.
~b! Fractal measure relations.
~c! The correlation function.
~d! The distribution function.
The radial method employed by Cooper and Stevens@6#,

Eq. ~3!, is shown in Fig. 6 in a logL(R) vs logR plot, applied
to two electrical trees simulated by the dielectric breakdo
model, withh51 andh55. When the increments inR are
very small, the logL(R) vs logR curves have S shapes b
cause of incomplete sampling. Following Cooper a

FIG. 3. Normalized cumulative probability of propagatio
times. ~a! Time is measured as the number of bonds incorpora
into the tree (ts). ~b! Time is measured as the number of perio
required for the tree to incorporate a number of bonds equal to
number of candidates incorporated in the previous periodt.
0-3
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IRURZUN, VICENTE, CORDERO, AND MOLA PHYSICAL REVIEW E63 016110
Stevens@6#, the ends of these curves were not taken i
account. Within the 95% of the confidence interval, the l
ear relationship is satisfied.

The correlation function method gives distributions w
smaller standard deviations of the fractal dimensionD and,
for this reason, it is one of the most frequently employed
the study of simulated trees@13#. However, its use in rea

FIG. 4. ~a! Dependence of characteristic propagation timea, s

@Weibull distribution, see Eq.~2! and the mean timem, j ~normal
distribution! on the DBM parameterh. ~b! Dependence of shap
parameterb, s @Weibull distribution, see Eq.~2!# and the relative
mean valuem/s, j ~normal distribution! on the DBM parameterh.

FIG. 5. The new unit of time is the period required for the tr
to incorporate a number of bonds equal to the number of candid
to be incorporated~dashed lines! at ~a! t5k; ~b! t5k11, k
51,2,3, . . . . From ~a! to ~b! t increases by one unit, whereasts

increases by 11 units.
01611
o
-

n

situations is limited by the complexity of the method. On t
other hand, the radial method, see Eq.~3!, has the advantage
of simplicity. We compared both methods in 500-tree fam
lies generated on a 1003100 lattice.

Figure 7 shows a comparison between the radial and
correlation method as a function of theh value. Both meth-
ods give similar fractal-dimension mean values, but the
dial method has very large dispersion. It is necessary the
take a large number of samples in order to have a be
estimation of the fractal dimensionD.

IV. RESULTS

Figures 8~a! and 8~b! show principal branches of electr
cal trees experimentally obtained by Cooper and Stevens@6#,

es

FIG. 6. Range of validity of the radial method, see Eq.~3!, to
evaluate fractal dimensionsD on 1003100 lattices for a couple of
simulated electrical trees.

FIG. 7. Comparison between the fractal dimensionD evaluated
with the function correlation method,s, and the radial method,j.
0-4
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whereas Fig. 8~c! shows a fractal structure generated by t
model developed in Sec. III. A visual comparison betwe
experimental and simulated electrical trees enabled us to
preciate their remarkable similarity.

Now let us compare the dependence of the character
propagation timea on the fractal dimension of the electric
trees generated by the model developed in Sec. III, and
experimental dependence obtained by Cooper and Ste
shown in Fig. 1.

Electrical trees were simulated on a 2003200 lattice
~size!. Due to the fact that characteristic lengths of electri
channels are roughly 5 to 10mm, the above-mentioned lat
tice size is adequate to simulate the 2-mm-thick samp
used by Cooper and Stevens@6#.

Propagation time was evaluated by using two differ
approaches~see Sec. III A!, called ts step andt period, re-
spectively. If the model was adequate to describe the exp
mental information both propagation characteristic tim
~theoretical and experimental! would differ by a constant,
a theor /aexpt5cte.

Figure 9~a! shows the dependence ofa, as , andaexpt on
the fractal dimensionD. Both, a andas were multiplied by
a constant factor for comparison purposes. Ratiosa/aexpt,
as /aexpt as a function of the fractal dimensionD were
evaluated and plotted in Fig. 9~b!, whereaexpt stands for the
experimental characteristic propagation time obtained
Cooper and Stevens@6#. We learn from that figure that th
ratio a/aexpt approaches a constant value when the fra
dimension~or the cross-linking density, see Sec. II! is in-
creased, whereas the ratioas /aexpt grows without any limits
as the fractal dimension increases.

Characteristic propagation timea seems to describe sa
isfactorily the experimental behavior within the fractal d
mension interval 1.1,D,1.5. Therefore, we can conclud
that the unit of time proposed in this paper to evaluate pro
gation timet clearly reproduces the dependence of charac
istic propagation timea on the fractal dimension observe
experimentally, see Fig. 9~a!. Hence, a propagation tim

FIG. 8. Comparison between an experimental electrical tree~on
the left, from Ref.@6#! and a simulated electrical tree~on the right!
from the DBM model~h53! developed in Sec. III A . Both struc
tures have the same fractal dimensionD51.18 evaluated with the
radial method.
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based on the number of bonds incorporated into the elect
treets , as was proposed up to now by different authors@14#,
fails to reproduce the experimental facts, see Fig. 9.

The glass transition temperatureTg of cross-linked poly-
mers is proportional to the cross-linked density (n),

Tg~n!5Tg~0!1Zn, ~6!

whereZ is a material-dependent constant. Equation~5! was
proposed in the 1950s by Ueberreiter and Kaming@15#.
Glans and Turner@16# have tested the validity of such as
sumption on samples of cross-linked polystyrene.

We have recently proposed a thermodynamical interp
tation for the fractal structures obtained by the DBM mod
on a linear two-dimensional geometry@10,17,18#, following
the pioneer paper of Elezgarayet al. on an open-planar ge
ometry @19#. According to the growth rule of the model,
collection of electrical treesCM , whereM is the number of
branches is obtained and the branching structuresCM give
the state of damage in terms of the number of branches
this context, a probabilityp(CM ,h) for each CM can be
assigned to each value ofh. Based on a number of numerica
simulations, the following expression can be obtained@18#

ln@p~CM ,h!#5S~CM !1A~CM !v~h!1g~h,M !, ~7!

wherev~h! andg(h,M ) are two universal functions,A(CM)
plays the role of the energy of the electrical tree, a
S(CM) is a history degeneracy factor. The above express
for p(CM ,h) has the form of a Boltzmann weight ifv~h! is

FIG. 9. ~a!: Dependence of characteristic propagation tim
aexpt, s; as , j; and a, m on fractal dimensionD. ~b! Depen-
dence of characteristic propagation timesas and a relative to the
experimental valueaexpt on fractal dimensionD. as /aexpt ~s!;
a/aexpt ~j!.
0-5
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identified as a ratio with a ‘‘reference energy ’’ andg(h,M )
as the free energy.

Cooper and Stevens@6# have determined that the cross
linking reaction is exothermic with a total reaction enthalp
related to the concentration of styrene monomer and uns
urated polyester sites. As the reaction proceeds the cross-
density increases beyond the gel point. This was monito
by measuring the residual enthalpy of the reaction and c
responding increases in the glass transition temperature.

In the present situation, the universal functionv~h! could
be identified with the inverse of the cross-linked density e
ergy ~the above-mentioned ‘‘reference energy’’!, or, see Eq.
~6!, with the glass transition temperature. Figure 10 sho
the relationship betweenTg andh that was deduced by ob-
serving their dependence on the fractal dimensionD, see
Figs. 1~b! and 7. An inverse relationship between glass tra
sition temperature andh is observed.

V. CONCLUSIONS

In this paper we studied the fractal nature of electric
trees obtained by a dielectric breakdown of cross-linked m

FIG. 10. Dependence of glass transition temperatureTg on the
DBM parameterh, see Sec. IV.
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terials by numerical simulations based on the DBM mode
a two-dimensional geometry. We extended the one par
eter model~DBM! by redefining the unit of time. The new
unit of time is based on the time elapsed to incorporat
number of bonds equal to the number of elements of thG
set, see Fig. 5 and Eq.~5!.

With the model developed in Sec. III we found the fo
lowing:

~i! The model produces fractal structures that are sim
to those experimentally observed~see Fig. 8 and@6#!, char-
acterized by a fractal dimensionD.

~ii ! An adequate definition of the unit of time allowed u
to reproduce the dependence of the characteristic timea,
experimentally found, on the fractal dimensionD, which is
valid in the interval 1.2,D,1.5, see Fig. 9.

~iii ! Propagation distribution times of the simulated ele
trical trees obey a Weibull statistics@see Fig. 3~a!# charac-
terized by two parameters; a shape factorb and a character-
istic propagation timea, as experimentally found@6#.

~iv! From Figs. 1~a! and 1~b! we learn that the depen
dence of the propagation characteristic timea on the fractal
dimensionD should be related to a basic material prope
such as the cross-linking density. Based on variations in
sidual enthalpy with the postcure temperature, Cooper
Stevens have come to the same conclusions, see Fig.
Ref. @6# . Anyhow, more experimental information would b
necessary to test this hypothesis. In particular, chemic
different cross-linked polymers should be investigated.

~v! Finally, a relationship between the parameterh of the
DBM model and the glass transition temperatureTg was
found, which is in agreement with derivations based on
thermodynamical model of electrical trees@10,18#.

The present model involves a notion of universality th
deserves to be explored; work is currently in progress at
Plata University to unravel it.
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